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We propose a probabilistic algorithm to solve the multiple sequence alignment problem. The algorithm is a
simulated annealing that exploits the representation of the multiple alignment between D sequences as a
directed polymer in D dimensions. Within this representation we can easily track the evolution of the alignment
through local moves of low computational cost. In contrast with other probabilistic algorithms proposed to
solve this problem, our approach allows the creation and deletion of gaps without extra computational cost.
The algorithm was tested by aligning proteins from the kinase family. When D=3 the results are consistent
with those obtained using a complete algorithm. For D�3 where the complete algorithm fails, we show that
our algorithm still converges to reasonable alignments. We also study the space of solutions obtained and show
that depending on the number of sequences aligned the solutions are organized in different ways, suggesting a
possible source of errors for progressive algorithms. Finally, we test our algorithm in artificially generated
sequences and prove that it may perform better than progressive algorithms. Moreover, in those cases in which
a progressive algorithm works better, its solution may be taken as an initial condition of our algorithm and,
again, we obtain alignments with lower scores and more relevant from the biological point of view.
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I. INTRODUCTION

The multiple sequence alignment �MSA� problem consti-
tutes one of the fundamental research areas in bioinformat-
ics. While at first sight it may seem a simple extension
of the two-string alignment problem two strings good, four
strings better, for biologists, the multiple alignment of
proteins or DNA is crucial in deducing their common
properties �1�.

To determine a good multiple sequence alignment of D
sequences is a relative task. The sequences, in general, con-
sist in a linear array of symbols from an alphabet of k letters
�k=4 for DNA and k=20 for proteins�. Usually one defines a
score function that depends on the distances between the
letters of the alphabet, and assumes that the best alignment is
the one that minimizes this score function.

It is common to define the MSA score in terms of the
scores of the pairwise global alignments of the sequences
�sum of pairs score� �2�. Given two sequences a� =a1 ,… ,am

and b� =a1 ,… ,bm let ��a ,b� be the cost of the mutation of a
into b and � the cost of inserting or deleting a letter. Extend-
ing ��a ,b� so that ��a ,−�=� and ��−,b�=� and consider-
ing that a null �−� symbol isolated from others �−� pays an
extra cost � �2� we may define the score of a pairwise align-
ment Mi,j for sequences ai and bj of size m as

s�Mi,j� = �
h=1

m

��ai,h,bj,h� + n� �1�

where n is the number of isolated �−�. Then, the score for the
multiple alignment M is given by

E�Mi,j� = �
i,j

s�Mi,j� . �2�

The multiple sequence alignment has at least three impor-
tant applications in biology: classification of protein families
and superfamilies, the identification and representation of
conserved sequences features of both DNA and proteins that
correlate structure and/or function, and the deduction of the
evolutionary history of the sequences studied �1,3�.

Unfortunately the problem is known to be NP complete
and no complete algorithm exist to solve real or random
instances. Therefore, many heuristic algorithms have been
proposed to solve this problem. The algorithm of Carrillo-
Lipman �4� �which is complete�, is a dynamic programming
algorithm able to find the multiple alignment of three se-
quences. With some heuristics added, it finds the alignments,
in a reasonable time, for up to six sequences �1�. However,
its computational cost scales very fast with the number of
sequences and is of little utility for more ambitious tasks.
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In the early 1990s the problem was approached using
ideas coming from physics. Kim and collaborators �5� and
Ishikawa and collaborators �6� used different versions of the
simulated annealing �7� technique with some success, but
their algorithms were unable to change the number of gaps in
the alignment. This means that once they started with a given
initial configuration �usually taken from some heuristics�,
any motion of segments in the sequences conserved the num-
ber of gaps. To extend these programs allowing the number
of gaps to change would causes the appearance of global
moves in the algorithm that are very expensive from the
computational point of view.

Probably the most successful attempt to solve this prob-
lem has been the CLUSTAL project �8�, a progressive algo-
rithm that first organizes the sequences according to their
distances and then aligns the sequences in a progressive way,
starting with the most related ones. Moreover, it uses a lot of
biological information, some motifs of residues rarely accept
gaps, subsequences of residues associated with structural
subunits are preferred to stay together during the alignment,
etc. These features, and a platform easy to use and integrated
with other standard bioinformatic tools, have made CLUSTAL

the favorite multiple sequence alignment program for biolo-
gists and people doing bionformatics in general �9�. How-
ever, it also has important drawbacks. Once the first k se-
quences are aligned, the inclusion of a new sequence will not
change the previous alignment, the gap penalties are the
same independently from how many sequences have been
already aligned or their properties, and being a progressive
method the global minimum obtained is strongly biased by
those sequences that are more similar �8�.

Recent advances in these kind of algorithms �which in-
cludes T-COFFEE �10�� consist in a better use of information
obtained a priori, mainly by a preprocessing of the se-
quences using, for example, a local pairwise alignment pro-
cedure and combining both global and local information of
these pairwise alignments. This approach avoids some of the
most important inconvenients of the original version of
CLUSTAL, minimizing the errors during the early stage of the
alignment. However, while it has been shown that it per-
forms very well in different situations �10�, these are algo-
rithms based on heuristic solutions difficult to characterize
and therefore difficult to improve by using further algorith-
mic or biological arguments.

Another recent and also successful approach uses the con-
cepts of hidden Markov models �11�. While the sequences do
not need to be organized a priori, one must start assuming a
known model of protein �or DNA� organization, which is
usually obtained after training the program in a subset of
sequences. Then one must be aware that the results usually
depend on the training set, especially if it is not too large.
Moreover, if we are dealing with sequences of unknown
family or that are difficult to characterize this approach does
not guarantee good alignments.

In 1994 Godzik and Skolnick �12� proposed a simulated
annealing �SA� algorithm that exploits the equivalence be-
tween the optimal multiple sequence alignment and a multi-
dimensional lattice chain of minimum energy in a random
medium �13�. The algorithm we propose in this work is
based on the same idea, and therefore it shares the same

advantages when compared with previous attempts �5,6�.
Both algorithms allow for the insertion and deletion of gaps
in a dynamic way using only local moves of low computa-
tional cost. The main differences between our algorithm and
the one of Godzik and Skolnick consist in the type of local
moves allowed and the score function used. Our moves are
“smaller” and the score function we used is probably more
relevant from the biological point of view. The use of smaller
moves reduces the time spent in the calculation of the energy
and increases the acceptance rates of the moves. However, it
has an important drawback; if the initial conditions are too
far from the global minimum, or the system reaches a local
minimum, the probability to reach the conformation of mini-
mal global energy is smaller than using large moves. Surely
a good strategy should be the combination of both types of
moves. Moreover, while Godzik and Skolnick tested their
program aligning three sequences we present results for up to
18 sequences, probing by comparison with results from
CLUSTAL the feasibility of our approach.

The rest of the paper is organized in the following way. In
the next section we make a short review of the theoretical
foundations of our algorithm. Then in Sec. III we explain the
implementation details, and the results are discussed in Sec.
IV. Finally the conclusions are presented including an out-
look for future improvements of this program.

II. THEORETICAL BACKGROUND

Usually, multiple sequence alignments are studied and vi-
sualized by writing one sequence on top of the other, miming
a table �see Fig. 1� and all the probabilistic algorithms de-
vised so far use the simplicity of this representation to gen-
erate the moves.

Instead of that, we will use the well known fact �2,3� that
the alignment of D sequences may be represented in a
D-dimensional lattice �see Fig. 2 for D=2�.

The cells of the D-dimensional lattice are labeled by D
indices �i1 , i1 ,… , iD�. The bonds encode the adjacency of
letters: A diagonal bond in a D-dimensional space represents
the D pairing �ai1

,bi2
,… ,wiD

�. The insertion of gaps is rep-
resented by bonds without components in the sequences
where the gaps were inserted. For example, a D pairing
�ai1

,bi2
,− ,di4

,… ,wiD
� is represented by a bond whose pro-

FIG. 1. Usual representation of a multiple sequence
alignment.
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jection on the third sequence is zero, and the D pairing
�ai1

,− ,− ,di4
,… ,wiD

� is represented by a bond whose projec-
tions on the second and third sequences are zero.

Then, any alignment maps onto a lattice path that is di-
rected along the diagonal of the D-dimensional hypercube.
This lattice path may be interpreted as a directed polymer
and the random medium in the problem is provided by the
structure of the sequences to be aligned and by the distance
between the residues in the different sequences.

This mapping was already fruitfully used by Hwa and
collaborators �13� to prove that the similarities between two
sequences can be detected only if their amount exceeds a
threshold value and to propose a dynamic way to determine
the optimal parameters for a good alignment of two se-
quences.

Here, our main focus will be to optimize the directed
polymer �lattice path� under the constraints imposed by the
sequences and their interactions in dimensions larger than 2.
To use a simulated annealing algorithm we extend the usual
representation of the ground state of the problem to finite
temperatures. Then, a finite-temperature alignment is defined
as a probability distribution

P�C� =
1

Z
e−�E�C� �3�

over all possible conformations C of the polymer, where E is
given by Eq. �2�, and Z is the partition function of the align-
ment �14�. The temperature ��−1� controls the relative weight
of alignments with different scores �different conformations
of the polymer� while ��a ,b� controls the length of the poly-
mer and the frequency of the gaps. In physical terms, P�C�
defines an ensemble at temperature �−1 with line tension �
and chemical potential ��a ,b� �15�.

This kind of algorithm, together with the already dis-
cussed advantages when compared with other SA algorithms,
permits us to easily visualize and quantify the localization
length �13�. This is a quantity that measures the distance
between the correct alignment and the optimal alignment. By

correct alignment we mean the alignment that characterizes
the real evolutionary relation between the sequences. These
alignments, when mapped as lattice chains, describe two
polymers that will overlap more or less depending on the
quality of the algorithm performance. To have this kind of
representation may give some insight on which are the re-
gions of alignment worse and/or better represented by the
global minimum. This in turn may give clues about the type
of moves to be used, the best scheduling procedure, etc.

III. THE ALGORITHM

Simulated annealing was introduced many years ago by
Kirkpatrick et al. �7� to find a global minimum of a function
in combinatorial optimization problems. SA is a probabilistic
approach, which in general needs a state space, the different
configurations of the directed path, and a cost or energy
function to be minimized �Eq. �2��.

Simulated annealing generates new alignments from a
current alignment by applying transition rules of acceptance.
The criteria for acceptance are the following: �a� if �E�0,
accept the new alignment; �b� if �E�0 accept it with prob-
ability P��E�=e−��Enew�C�−Eold�C��.

The parameter � controls the probability to accept a new
configuration. Initially, one starts at low values of � �high
temperatures� and then increases it, applying an annealing
schedule. If the temperature is lowered slowly enough, it can
be proved that the system reaches a global minimum �16�.
Unfortunately it will require infinite computational time and
one usually selects the best schedule to match the computa-
tional facilities at hand. Then SA is run over many initial
conditions, and one assumes that the output of minimum
energy is �or is close to� the global minimum.

In multiple sequence alignment this is also the case, but
differently to what happens in other combinatorial optimiza-
tion problems, here the average solution, i.e., that obtained
after averaging over all the local minima, may be interesting
by itself. In fact, researchers are often interested not in the
particular details of the alignment, but in its robust proper-
ties, and to compare all the outputs of the SA is a way to get
this information.

From the technical point of view, once a cost function is
defined, one needs to select the moves to be associated with
the transition rates. Our description of the multiple sequence
alignment problem as a directed polymer in a random me-
dium allows the definition of three types of moves: insertion,
deletion, and motion of gaps. All these moves are repre-
sented in Fig. 3 in a two-dimensional grid. The extension to
D-dimensional systems is straightforward.

In this way we get an algorithm that allows the creation of
gaps, which means a search space larger than that usually
probed by similar methods. At the same time the algorithm is
quadratic in the number of sequences. The computational
cost of any move is limited by the square of the number of
sequences to be aligned.

In this work, we do not follow any heuristic strategy of
optimization. Our intention is to prove the potential of this
strategy and we kept things as simple as possible. For ex-
ample, if we start too far from the global minimum, the

FIG. 2. A directed path �thick line� in a bidimensional grid.
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selection of local moves alone will make the algorithm to
converge very slowly to it. This drawback may be overcome
using very different initial conditions or trying, every few
time steps, global moves that change radically the conforma-
tion of the polymer. We did not take care of this. During the
simulation the three moves were chosen with probability
1 /3. The only biological information inserted was given by
the cost matrix used to align the protein sequences. We avoid
the use of important and well known biological information,
fixed residues, phylogenetic tree of the sequences, etc., and
the program was designed without the use of optimization
tricks.

IV. RESULTS

A. Relaxation

All the results presented in this section reflect the align-
ments of proteins from the kinase family, but qualitatively
similar results were obtained for the GPCR �G protein-
coupled receptors� and CRP �cAMP receptor protein� fami-
lies. The simulations started with �=1.0 and every trel Monte
Carlo steps � was increased by a factor of 1.01 until
�=3.0. We made sure that in all cases the system reached the
equilibrium. The different initial conditions were chosen by
inserting gaps randomly in all the sequences but the largest
one, such that considering these gaps at t=0, all the se-
quences were of equal length. To define the distance between
the letters of the alphabet we use the PAM-250 matrix �11�.

In Fig. 4 it is shown the approach to equilibrium of the
multiple sequence alignment of three sequences averaged
over 100 initial conditions for trel=10,100, 1000, and 10 000.
Comparing with the result of the Carrillo-Lipman algorithm
it is evident that for trel=10 000 the algorithm is very close to
the global minimum. However, one should notice that, unlike
what is usually obtained in other algorithms for the multiple
sequence alignment problem, the figure reflects average val-
ues over the multiple alignment.

One is often interested, rather than in the average, in the
alignment of minimum energy. In Fig. 5 we present, for dif-
ferent values of trel, a histogram of the energies for the align-

ments obtained using 1000 initial conditions. We used the
same three proteins of the kinase family shown in Fig. 4.
Note again that for trel=1000 we obtain exactly the Carillo-
Lipman result with nonzero probability. Moreover, looking at
the structure of the histogram for trel=1000, one can also
conjecture that if the average multiple sequence alignment is
calculated only with those alignments concentrated in the
peak of lower energies, the result presented in Fig. 4 will be
closer to that of the Carrillo-Lipman algorithm.

Another symptom suggesting that the average over the
realization must be taken with care comes from the analysis
of Fig. 6. There we present again histograms for trel=1000
but using three different samples of the kinase family. Note
that while sample 1 and sample 3 are very well behaved and
the results compare very well with the Carillo-Lipman
method, the situation for sample 2 is different. To get good
results in this case, it is clearly necessary to go beyond 1000
Monte Carlo steps.

In the same spirit of Fig. 4, Figs. 7 and 8 show results
suggesting that also for higher dimensions, if trel is large
enough the algorithm should produce good alignments. In

FIG. 3. Local moves of the algorithm in a two-dimensional grid
�from arrows to dashed lines�: �a� gap insertion, �b� gap motion, and
�c� gap deletion.

FIG. 4. Mean energy versus time for the alignment of three
sequences from the kinase family. From left to right trel=10,100,
1000, and 10 000. The averages were taken over 100 initial condi-
tions. The horizontal line represents the result of the Carrillo-
Lipman algorithm

FIG. 5. Energy histograms for the alignment of three sequences
from the kinase family at different trel. The Carrillo-Lipman result is
indicated by the arrow.
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fact, also in these cases the energy decreases linearly with
trel.

If the number of sequences is higher, the correlations be-
tween the sequences increase, and the algorithm should find
better results. This fact may be clearly seen in Fig. 9 where
the equilibration time of the algorithm �in Monte Carlo Steps
�MCS�� is shown as a function of the number of sequences.
The equilibration time, measured as the time necessary to
reduce the energy by a factor e, decreases linearly when the
number of sequences to be aligned increases. Of course the
results may change if very different sequences are aligned,
but in this case all other known algorithms fail to predict
good alignments. Then, we may say that for the most com-
mon cases of correlated sequences, we present an algorithm
whose convergence time decreases with increasing D, and
whose moves only increase quadratically with D.

B. Space of solutions

With these results at hand, we go on to study the structure
of the space of the solutions as a function of the number of
aligned sequences. We define a distance �d� between two
alignments A and B in the following way. Given two solu-

tions Ai,j and Bi,j �where the index i stands for the sequence
and j for the position of the symbol in the sequence� we
aligned one by one the D sequences of each solution using a
dynamic programming algorithm reminiscent of the
Needleman-Wunsh algorithm with the following score func-
tion:

ca�A,B� = �0 if Ai,j = Bi,j ,

1 if Ai,j � Bi,j ,

r � 1 if a gap is inserted,
�

and express dA,B as

dA,B =
1

D
�
i,j

ca�Ai,j,Bi,j� . �4�

In this way identical alignments will be at distance 0 from
each other, and the insertion of gaps to obtain good align-
ments is penalized, such that the original alignments are al-
tered minimally during the calculation of dA,B. We calculated
d with r=2 and 8 and the results were the same �apart from
a constant shift in d�. Below we present the results for r=2.

FIG. 6. Histograms of energy for the alignment of three different
samples of three sequences from the kinase family at trel=1000. The
Carrillo-Lipman results are indicated by arrows.

FIG. 7. Mean energy versus time for the alignment of nine se-
quences from the kinase family. From left to right trel=10,100, and
1000. The averages were taken over 100 initial conditions.

FIG. 8. Mean energy versus time for the alignment of 18 se-
quences from the kinase family. From left to right trel=10, 100, and
1000. The averages were taken over 100 initial conditions.

FIG. 9. Equilibration time versus D. The average was done over
500 initial conditions for trel=1000.
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We study how different from the solution of minimum
score are the other solutions obtained aligning D sequences.
For every value of D we use 1000 initial conditions and trel
=1000. Note that the sequences used were always the same.
This means, we first aligned three sequences from the kinase
family. Then, to align four sequences we just added a new
one to the previous three and started the alignment from
scratch. The procedure was repeated for every new value of
D.

The results appear in Figs. 10 and 11 where E−Emin is
plotted as a function of d. From the figures it becomes evi-
dent that the space of solutions strongly depends on the num-
ber of sequences aligned. For example, while for three se-
quences the distance between the alignments is correlated
with the difference in score, for more than four sequences it
is not the case. Moreover, while for D�6 the distance be-
tween the solutions decreases, it increases for D�6 and re-
mains constant for D�12. Surely, these results reflect the
correlation between the proteins aligned. For example, we
may speculate that for 3�D�6, any new protein added con-
tributed to finding more similar alignments, i.e., added rel-
evant information to the system. However, for D�6 the se-
quences contributed with new and uncorrelated information
that produces more distant alignments, and for D�12 adding
new proteins does not change the relevant characteristics of
the alignment.

Considering the limitations of many progressive algo-
rithms to change the previous alignment when new se-
quences are added these results appear particularly relevant.
Figures 10 and 11 clearly suggest that the inclusion of one
single sequence may dramatically change the character of the
solutions.

C. Evolutionary dynamics

It is quite difficult to unambiguously define what is a bet-
ter sequence alignment; it often depends on a posteriori pro-
cessing, the comparison with structural information, the mo-
tif conservation, or even the criterion of an expert. This is
particularly relevant when comparing unknown or very di-
vergent sequences. Therefore, to test our algorithm, we de-
cided to develop two kinds of evolutionary processes. Start-
ing from a real sequence, we generate new �now artificial�
sequences but keeping a trace of the polymer created by the
evolutionary processes. In this way we are able to compare
the distance between the alignments generated by our simu-
lated annealing and CLUSTALW with the “real” evolutionary
relation between the sequences.

Evolutionary process I. Starting from a real sequence
taken from the kinase family, we generated k new sequences
using the following procedure. We move sequentially
through a copy of the original sequence and at each position
i of the sequence we perform, with probability, 0.25 one of
the following actions: �1� Substitute the aminoacid at the
position i by a new aminoacid with probability p; �2� delete
the aminoacid at position i with probability p; �3� Insert a
new aminoacid at position i with probability p; �4� do noth-
ing.

The deletion of aminoacids in the new sequence is
equivalent �keeping the alignment� to the insertion of a gap.
For the same reason the insertion of a new aminoacid is
equivalent to introduce a gap, at the same position in the
original sequence.

Once the last aminoacid is reached, we already have two
sequences and the correct alignment that reproduces the evo-
lutionary relation between them. To obtain more sequences
we follow a similar procedure, starting from the �now modi-
fied� original sequence we repeat the steps described above
but every time an aminoacid was inserted in the new copy,
we insert a gap at the same position in all the already gen-
erated sequences.

The aminoacid to be inserted in step 3 was selected ran-
domly from the 20 known aminoacids. The substitution was
done trying to reflect the structure of the matrix PAM-250
�which is used latter by our SA and by CLUSTALW to find the
best alignment�. Roughly speaking the PAM matrix repre-
sents the probabilities that one aminoacid is substituted by
the other 19. For each aminoacid we choose the set of ami-
noacids with higher probabilities of substitution and each
time step 1 above was executed, one of them was randomly
selected. In this way, we may obtain D evolutionary related
sequences, all descending from the same real sequence, and
the alignment or �equivalently� the chain path that correctly
describes this process.

The next step was to test the capability of our algorithm to
reproduce this correct alignment starting from random initial

FIG. 10. E−E0 versus d for the alignment of three, four, and five
sequences of the kinase family.

FIG. 11. E−E0 versus d for the alignment of 6, 9, 10, 11, 12, 15,
and 18 sequences of the kinase family.

HERNÁNDEZ-GUÍA, MULET, AND RODRÍGUEZ-PÉREZ PHYSICAL REVIEW E 72, 031915 �2005�

031915-6



conditions. To do this we run our program and calculate the
distance �see Eq. �4�� between the best alignment generated
by the simulated annealing and the correct alignment. For
comparison we show in Figs. 12 and 13 the plot of these
distances for different values of p together with the distances
obtained using the output of CLUSTALW and MSA. From now
on, all the figures obtained are the results of runs starting
with �=0.1 at multiplicative steps of 1.01 and relaxing at
each � for 100 MCS. These are very fast runs; in fact most
of the computer time was spent doing the statistics �on 20
generated set of sequences for each D� and calculating the
distances.

As the figures clearly show, for fewer than nine sequences
the larger the value of p �the more divergent are the se-
quences�, the better is the result of the simulated annealing
compared with CLUSTALW. For nine or more sequences
CLUSTALW performs better.

A more realistic evolutionary process should include a
parameter 	 that quantifies the temporal evolution of the se-
quences generated. Therefore we made a similar study but
generating sequences in a different way.

Evolutionary process II. Starting from a real sequence we

generate D copies of this sequence. Then at each iteration
step we move sequentially through all the sequences at the
same time and we perform, with probability 0.25, in each
sequence, at each position, one of the following actions: �1�
Substitute the aminoacid at position i by a new aminoacid
with probability p=0.001; �2� delete the aminoacid at posi-
tion i with probability p=0.001; �3� insert a new aminoacid
at position i with probability p=0.001; �4� do nothing.

If an insertion action is taken in D−k sequences, we in-
troduce a gap, at the same position, in the k remaining se-
quences, independently from the action previously per-
formed on them. A time step is defined after we reach the end
of the sequences. Then, starting from these �now modified�
sequences, we repeat the procedure 	 times, obtaining in this
way the correct alignment between D sequences that di-
verged in time, at the same rate, from an original one.

The main difference with the previous approach is the
relevance of the time. While in the first evolutionary process
it was hidden in the mutation rate p, now the mutation rate is
fixed, and the time is explicitly taken into account. As before
the aminoacid to be inserted in step 3 was selected randomly
between the 20 known aminoacids and the substitution was
done trying to reflect the structure of the PAM matrix.

Calculating again the distance between the best solution
of the SA and the correct alignment derived using the evo-
lutionary process II we get, as Figs. 14 and 15 show, results
qualitatively similar to those obtained using the evolutionary
process I. Again, our simulated annealing performs better
than CLUSTAL for a small number of sequences, specially
when the sequences are very different.

It may well be that a critical dimension exists above
which the properties of the polymer are difficult to reproduce
by simple minimization procedures like SA. Another expla-
nation may be that since the sequences compared are statis-
tically correlated, increasing its number the progressive
alignment has more information to improve its performance
and therefore works better at higher dimensions. In any case,
the results presented above clearly proves that the simulated
annealing may perform better than CLUSTAL.

Moreover, even in those cases in which CLUSTAL behaves

FIG. 12. Distances between the best solution of our simulated
annealing, the Carrillo-Lipman algorithm and CLUSTALW with the
correct alignment for three sequences generated through the evolu-
tionary process I.

FIG. 13. Distances between the best solution of our simulated
annealing and CLUSTALW with the correct alignment for nine se-
quences generated through the evolutionary process I.

FIG. 14. Distances between the best solution of our simulated
annealing, the Carrillo-Lipman algorithm and CLUSTAL with the cor-
rect alignment for three sequences generated through the evolution-
ary process II.
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better than SA, its solution may be used by our algorithm for
further optimization. We tested the performance of our algo-
rithm using the output of the CLUSTAL as an input of our
simulated annealing. Then we calculated the distance be-
tween the solution of the CLUSTALW and the correct align-
ment �dc�, and the distance between the best solution of the
SA �starting from the output of CLUSTALW� and the correct
alignment dSA

c . In this case, as shown in Fig. 16 the simulated
annealing again outperforms CLUSTAL, especially if the se-
quences are very distant from the evolutionary point of view.
Therefore, we may conclude that even in those cases in
which CLUSTALW works better our SA may be used as a
further method of optimization.

V. CONCLUSIONS AND OUTLOOK

In this work we presented a probabilistic algorithm to
perform the multiple alignment of proteins. The algorithm is
based on the mapping between the DPRM and the multiple

sequence alignment problem. In contrast with other probabi-
listic algorithms our algorithm permits the variation of the
number of gaps in the alignment without the necessity of
expensive global moves. It is proved that for small number
of sequences it reproduces the results of a complete algo-
rithm. Moreover, we show that for practical purposes the
equilibration time is almost independent of the number of
sequences aligned, D, and in the worst case, it scales linearly
with D. We studied the space of solutions for different num-
bers of aligned sequences, and find a very rich structure that
indicates the importance of just one sequence in the multiple
alignment. Furthermore, we showed that our algorithm may
perform better than CLUSTAL especially if the sequences are
very divergent and if they are not too many. Finally, in those
cases in which CLUSTAL performs better than our algorithm,
to use the SA with the CLUSTAL solution as initial condition
gives space for further optimization.

We are already working in implementing a similar work
but using parallel tempering instead of simulated annealing.
It is known that parallel tempering is more useful than SA
when dealing with very hard problems, like spin glasses.
Moreover, it is very suitable to parallelization. Also a direc-
tion of current work is the introduction of biological infor-
mation relevant to the alignment. This may impose important
constraints in the possible alignments, that may in turn
strongly reduce the space of possible solutions. And last, but
not least, important programming optimizations are in
progress to make competitive this program from the comput-
ing time point of view.
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APPENDIX

In this appendix we present a portion of the alignment
obtained by Clustal and by our algorithm of three sequences
artificially generated using the evolutionary process II. For
comparison, also the correct alignment is shown.

1. Clustal output

E=13116.0
Seq 1+ -----FHELWKIGSGEFGW-FKCVKRLW
Seq 2+ FHEEKGSWEFGGSVFCCVKLRLDGCIMY
Seq 3+ -----FHELEKIGSGEFGSVFCCVKCLD
Seq 1+ GCIYAIKKKPLAGSVDEQNALREVYAHV
Seq 2+ AIKRSGKKPLAGSVWDEQNWLREVYAHA
Seq 3+ GCIYAIKRSKKPLAGSVDEALREVYAHA
Seq 1+ LGGQHFHVVRYDSAWAEDDHMLIPHQNE
Seq 2+ VLGQHSHVVRYFNSAWADWHMLI--QNE
Seq 3+ VLGQHSHVVRYFSAWAEDDMLI---QNE

FIG. 15. Distances between the best solution of our simulated
annealing and CLUSTAL with the correct alignment for 18 sequences
generated through the evolutionary process II.

FIG. 16. Difference in the distances between the solution of
CLUSTAL and the best solution of our simulated annealing using
CLUSTAL solution as an input with the correct alignment for 18
sequences generated through the evolutionary process II.
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2. Simulated annealing output

E=11664.0
Seq 1+ FHELWKIGSGEFG--WFKCVK-RLWGCI
Seq 2+ FHE--EKGSWEFGGSVFCCVKLRLDGCI
Seq 3+ FHELEKIGSGEFG-SVFCCVK-CLDGCI
Seq 1+ -YAIK---KKPLAGSV-DEQNALREVYA
Seq 2+ MYAIKRSGKKPLAGSVWDEQNWLREVYA
Seq 3+ -YAIKRS-KKPLAGSV-DEA--LREVYA
Seq 1+ HVLGGQHFHVVRYD-SAWAEDDHMLIPH
Seq 2+ HAVLGQHSHVVRYFNSAWA-DWHMLI--
Seq 3+ HAVLGQHSHVVRYF-SAWA-EDDMLI--

3. Correct alignment

Seq 1+ FHELWKIGSGEF-G-WFKCVK-RLWGCI
Seq 2+ FHE-EK-GSWEFGGSVFCCVKLRLDGCI
Seq 3+ FHELEKIGSGEF-GSVFCCVK-CLDGCI
Seq 1+ -YAIK---KKPLAGSV-DEQNALREVYA
Seq 2+ MYAIKRSGKKPLAGSVWDEQNWLREVYA
Seq 3+ -YAIKRS-KKPLAGSV-DE--ALREVYA
Seq 1+ H-VLGGQHFHVVRYD-SAWAEDDHMLIP
Seq 2+ HAVLG-QHSHVVRYFNSAWA-DWHMLI-
Seq 3+ HAVLG-QHSHVVRYF-SAWAEDD-MLI-
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